Proposal for an international earth building design guidance document

Paul Jaquin

Proposal for an international earth building design guidance document

Paul Jaquin

Guidance books

What do we have at the moment?

Designation: E2392/E2392M - 10

Standard Guide for Design of Earthen Wall Building Systems¹

NZS 4297:1998

Engineering Design of Earth Buildings

The issues

- 1. Keep people safe
- 2. Build better stuff
- 3. Make more stuff

How do other industries work

GIB	Braci	cing Resistance			
able 1: GII Type	B* Standard Plasterboard Bracing Unit ratings Minimum Lining Length (m)	Other	BWm		
		8	Requirements	w	EQ
	0.4	GIB® Standard Plasterboard one side	N/A:	50	55
				70	60.
GS1-N	1.2				
9000 PULL	0.4	CITIS Stronger Displays and host sides	840A	70	65
9000 PULL		GIB® Standard Plasterboard both sides	N/A	70 95	65 85
GS1-N GS2-N GSP-H	0.4	GIB® Standard Plasterboard both sides GIB® Standard Plasterboard one side	N/A Panel hold-down		

No Product seller who will produce guides at their own cost

What do we need?

- In order to go Mainstream
- We need to allow non-specialists to design and specify earth buildings

International standards committees ASTM NZS Eurocodes Designers Builders

Clients

Poor design and construction happens without good guidance

Poor design and construction happens without good guidance

Contents

- Investigation
- Material selection
 - Stabilised
 - Unstabilised
 - Reinforced
 - Unreinforced
- Structural design
 - Structural systems
 - Vertical compression
 - Out of plane
 - In plane
 - Uplift
- Thermal performance
- Fire performance
- Weathertightness
- Construction detailing
- Specification
- Site testing

BMTRADA

CERTIFICATE OF REGISTRATION

This is to cortify that

ModCell

The Proving House 21 Sevier Street Bristol Avon 852 918

Figure 1: Cracked out-of-plane wall subject to ground motion

Investigation

Insitu material

- Particle sizes
- Construction type
- Optimum Water content
- Required design strengths
- Stabilisation
- Colour

Manufactured

 Previously tested properties

Material Selection

Structural system

Courtesy of Tata Steel

Vertical load

How to design masonry structures using Eurocode 6

2. Vertical resistance

Flow chart for the design of masonry walls to resist vertical actions

Lateral out of plane

Reinforced Unreinforced

Table 10.12: Static instability deflection for uniform walls - various boundary conditions Boundary 2 3 Condition Number t/2 82 e_b t/2 1/2 0 0 e_b (W/2+P)t (W+3P/2)t (W/2+3P/2)t (W+2P)t (W/2+P)h (WI2+P)h (W/2+P)h (W/2+P)h a (2W+3P)t (W+3P)t $\Delta_i = bh/(2a)$ t/2 (2W+4P) (2W+4P) $\{(W/12)[h^2+7t^2]$ $\{(W/12)[h^2+16t^2]$ {(W/12){h2+7t] $\{(W/12)[h^2+16t^2]$ +9Pf/4}/a +4Pf Vg +Pf}/g +9Pf/43/a (2+4P/W)t/h Cm (4+6P/W)t/h (2+6P/W)t/h 4(1+2P/W)t/h

Figure 12: Forces acting on wall

Lateral out of plane

Lateral – in plane

$$V_{\text{dt}} = f_{\text{dt}} A_{\text{n}} \beta \sqrt{1 + \frac{f_{\text{a}}}{f_{\text{dt}}}}$$

$$V_{\text{tc}} = (\alpha P + 0.5 P_{\text{w}}) \left(\frac{L_{\text{w}}}{h_{\text{eff}}}\right) \left(1 - \frac{f_{\text{a}}}{0.7 f'_{\text{m}}}\right)$$

$$V_{\text{r}} = 0.9 (\alpha P + 0.5 P_{\text{w}}) \frac{L_{\text{w}}}{h_{\text{eff}}}$$

$$V_{\text{s}} = 0.7 (t_{\text{nom}} L_{\text{w}} c + \mu_{\text{f}} (P + P_{\text{w}}))$$

Figure 10.65: A rocking pier

Uplift

Control joints - Shrinkage

- Back wall of a plant room
- Temperature and humidity change to one side of the wall

Thermal resistance

Quoted R value (U value)

Fire resistance

- Cinva Ram fire test CSIRO
- Fire rating probably ok
- Formaldehyde release?

Weathertightness / Durability

Tests for stabilized walls don't give same results for unstabilised walls

Construction details

Colour

NK'Mip Desert Centre – Courtesy of SireWall

Specification

2.2		RAMMED EARTH MATERIALS		
	.1	Portland Cement: CAN/CSAA3001, Grey colour.		
	.2	Proprietary mix of amended soil and admixtures.		
	.3	Water: CSAA23.1, clean and not detrimental to rammed earth.		
	.4	Colour as per Prime Consultant selection.		
2.3		ADMIXTURES		
	.1	Chemical Admixtures: as recommended by rammed earth installer		
2.4		INSULATION		
	.1	Polyisocyanurate Insulation (Faced): CAN/ULCS704 Type 1, ASTM C1289 Type I, closed cell insulation conforming to the following:		
	.2	Compressive Strength: 172 kPa		
	.3	Thermal Resistance: Aged RSI of 1.145/ 25mm (R 6.5/inch)		
	.4	Facing: Factory applied facing of aluminum/poly/kraft on both faces.		
	5	Board Size: 1220x2440 mm		

Site testing

Conclusions

- We know how to do it
- Designed buildings usually perform much better than non designed ones
- Achieving national standards is difficult and expensive
- Earth building doesn't have a supplier to pay for design information
- In order to go mainstream we must allow others to design earth buildings without super specialist knowledge

http://ecvetearth.hypotheses.org/

- Train the builders
- European Initiative completed December 2015

Dr Chris Beckett - UWA

Thanks

Dr Daniela Cianco - UWA

Prof Charles Augarde – University of Durham

Dr James Norman – University of Bristol

